Effective C++ Third Edition 55 Specific Ways {OHapten\ YamsPuotpem esttidemignan@ Assigrinidldt Operators
CEE NEXT o ]

Chapter 2. Constructors, Destructors, and Assignment
Operators

Almost every class you write will have one or more constructors, a destructor, and a copy assignment operator.
Little wonder. These are your bread-and-butter functions, the ones that control the fundamental operations of
bringing a new object into existence and making sure it's initialized, getting rid of an object and making sure it's
properly cleaned up, and giving an object a new value. Making mistakes in these functions will lead to far-reaching
— and unpleasant — repercussions throughout your classes, so it's vital that you get them right. In this chapter, I

offer guidance on putting together the functions that comprise the backbone of well-formed classes.
Tl DAy Dy Up > e R ey

46 /353



Effective C++ Third Edition 55 Specific Ways to ImprdienYdukPmgnahet amtbarsigts @slkemthyRDDites and calls
[@erev NEXT o ]

ltem 5: Know what functions C++ silently writes and calls

When is an empty class not an empty class? When C++ gets through with it. If you don't declare them yourself, compilers
will declare their own versions of a copy constructor, a copy assignment operator, and a destructor. Furthermore, if you
declare no constructors at all, compilers will also declare a default constructor for you. All these functions will be both
public and inline (see Item 30). As a result, if you write

class Empty{};

it's essentially the same as if you'd written this:

class Empty {

public:
Empty() { ... } // default constructor
Empty (const Emptyé& rhs) { ... } // copy constructor
~Empty () { ... } // destructor — see below
// for whether it's wvirtual
Empty& operator=(const Empty& rhs) { ... } // copy assignment operator

}i

These functions are generated only if they are needed, but it doesn't take much to need them. The following code will
cause each function to be generated:
Empty el; // default constructor;

// destructor

Empty e2 (el); // copy constructor

e2 = el; // copy assignment operator

Given that compilers are writing functions for you, what do the functions do? Well, the default constructor and the
destructor primarily give compilers a place to put "behind the scenes" code such as invocation of constructors and
destructors of base classes and non-static data members. Note that the generated destructor is non-virtual (see Item7)
unless it's for a class inheriting from a base class that itself declares a virtual destructor (in which case the function's
virtualness comes from the base class).

47 /353



Effective C++ Third Edition 55 Specific Ways to ImprdienYdukPmgrahat amtbarsigts @sTkmthyDDites and calls

As for the copy constructor and the copy assignment operator, the compiler-generated versions simply copy each non-static
data member of the source object over to the target object. For example, consider a NamedObject template that allows
you to associate names with objects of type T:
template<typename T>
class NamedObject {
public:

NamedObject (const char *name, const T& value);

NamedObject (const std::string& name, const T& value);

private:
std::string nameValue;
T objectValue;

}i

Because a constructor is declared in NamedObject, compilers won't generate a default constructor. This is important. It
means that if you've carefully engineered a class to require constructor arguments, you don't have to worry about compilers
overriding your decision by blithely adding a constructor that takes no arguments.

NamedObject declares neither copy constructor nor copy assignment operator, so compilers will generate those functions
(if they are needed). Look, then, at this use of the copy constructor:

NamedObject<int> nol ("Smallest Prime Number", 2);

NamedObject<int> no2 (nol) ; // calls copy constructor

The copy constructor generated by compilers must initialize no2 . nameValue and no2.objectValue using
nol.nameValue and nol.objectValue, respectively. The type of nameValue is string, and the standard
string type has a copy constructor, so no2 .nameValue will be initialized by calling the st ring copy constructor
with nol.nameValue as its argument. On the other hand, the type of NamedObject<int>::objectValue is
int (because T is int for this template instantiation), and int is a built-in type, so no2.objectValue will be
initialized by copying the bits in nol .objectValue.

The compiler-generated copy assignment operator for NamedObject<int> would behave essentially the same way, but
in general, compiler-generated copy assignment operators behave as ['ve described only when the resulting code is both
legal and has a reasonable chance of making sense. If either of these tests fails, compilers will refuse to generate an
operator= for your class.

For example, suppose NamedObject were defined like this, where nameValue is a reference to a string and
objectValueisa const T:

template<class T>

48 /353



Effective C++ Third Edition 55 Specific Ways to ImprdienYdukPmgrahat amtbarsigts @sTkmthyDDites and calls

class NamedObject {

public:
// this ctor no longer takes a const name, because nameValue
// is now a reference-to-non-const string. The char* constructor
// 1s gone, because we must have a string to refer to.

NamedObject (std::string& name, const T& wvalue);

// as above, assume no

// operator= is declared

private:
std::string& nameValue; // this is now a reference
const T objectValue; // this 1s now const

}s

Now consider what should happen here:

std::string newDog ("Persephone") ;

std::string oldDog("Satch");

NamedObject<int> p (newDog, 2); // when I originally wrote this, our
// dog Persephone was about to

// have her second birthday

NamedObject<int> s (oldDog, 36); // the family dog Satch (from my
// childhood) would be 36 if she

// were still alive

P =s; // what should happen to

// the data members in p-?

Before the assignment, both p.nameValue and s.nameValue refer to string objects, though not the same ones.
How should the assignment affect p . nameValue? After the assignment, should p.nameValue refer to the string
referred to by s.nameValue, ie., should the reference itself be modified? If so, that breaks new ground, because C++
doesn't provide a way to make a reference refer to a different object. Alternatively, should the st ring object to which
p.nameValue refers be modified, thus affecting other objects that hold pointers or references to that string, i.e.,

49 /353



Effective C++ Third Edition 55 Specific Ways to ImprdienYdukPmgnahet amtbarsigts @slkemthyRDDites and calls

objects not directly involved in the assignment? Is that what the compiler-generated copy assignment operator should do?

Faced with this conundrum, C++ refuses to compile the code. If you want to support assignment in a class containing a
reference member, you must define the copy assignment operator yourself. Compilers behave similarly for classes
containing const members (such as objectValue in the modified class above). It's not legal to modify const
members, so compilers are unsure how to treat them during an implicitly generated assignment function. Finally, compilers
reject implicit copy assignment operators in derived classes that inherit from base classes declaring the copy assignment
operator private. After all, compiler-generated copy assignment operators for derived classes are supposed to handle

base class parts, too (see Item 12), but in doing so, they certainly can't invoke member functions the derived class has no
right to call.

Things to Remember

e Compilers may implicitly generate a class's default constructor, copy constructor, copy assignment operator,
and destructor.

[@rrey NExT o |

50/ 353





